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Near infrared spectroscopy (NIRS) is based on molecular overtone and combination vibrations. It
is di±cult to assign speci¯c features under complicated system. So it is necessary to ¯nd the
relevance between NIRS and target compound. For this purpose, the chondroitin sulfate (CS)
ethanol precipitation process was selected as the research model, and 90 samples of 5 di®erent
batches were collected and the content of CS was determined by modi¯ed carbazole method. The
relevance between NIRS and CS was studied throughout optical pathlength, pretreatment
methods and variables selection methods. In conclusion, the ¯rst derivative with Savitzky–Golay
(SG) smoothing was selected as the best pretreatment, and the best spectral region was selected
using interval partial least squares (iPLS) method under 1mm optical cell. A multivariate cali-
bration model was established using PLS algorithm for determining the content of CS, and the
root mean square error of prediction (RMSEP) is 3.934 g�L�1. This method will have great
potential in process analytical technology in the future.
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1. Introduction

Near infrared spectroscopy (NIRS) is a rapid and
nondestructive analytical technology, which is also
treated as one of the most e±cient process analytical
tools to analyze complicated components.1 The
most prominent absorption bands of near infrared
region are related to overtones and combinations of
fundamental vibrations of C–H, N–H, O–H and S–H
groups.2 NIR spectra are composed of a large
number of exploitable variables, but there are a
large number of unwanted variables, causing coli-
nearity, will reduce the predictive capability of the
method.3 Therefore, it is di±cult to ¯nd a speci¯c
band for speci¯c compound. It is very important to
investigate the relevance of e®ective information
between NIRS and objective compound. The factors
which a®ect the relevance include optical path-
length, pretreatment, variables selection, etc. In
order to get a good spectrum, selection of appro-
priate pathlength is very important especially for
analysis of trace component.4 Pretreatment
methods are also essentially important. First de-
rivative can eliminate irrelevant base-line drifting
while second derivative can remove the linear
background to near zero.5 Savitzky–Golay (SG)
smoothing can preserve the feature of raw spectra.
Standard normal variate (SNV) transformation6

seems to be suitable to remove the multiplicative
interferences of scatter and particle size.5 On the
other hand, selection of variables will solve the col-
linearity between spectral variables and eliminate
the information that are useless, as well as decrease
the cost of instrument, and improve the interpret-
ability of the results ultimately.7

In this study, chondroitin sulfate (CS) was selec-
ted as a substance model. It is a compound which is
composed alternatively by D-glucuronic acid and
di®erently sulfated residues of N-acetyl-D-galacto-
samine linked by �(1–3) bonds,8–10 and the diversity
of CS makes it have a wide range of applications
in clinical. The production of CS includes whole
processes from raw material to product storage. It
generally refers to evaluation of raw materials, CS
extraction, ultra¯ltration, oxidation, precipitation,
drying, grinding and packaging. Above all, ethanol
precipitation which will lead to an unstable product
quality and di®erences between batches is the most
important unit used in industrial production11–14 and
the relevance between NIRS and CS is still unclear.

Therefore, a CS ethanol precipitation process was
selected as the research process for investigating the
relevance between NIRS and CS.

This study was aimed at revealing the relevance
of e®ective information between NIRS and CS and
establishing a PLS model during the process of
ethanol precipitation. The optical pathlength was
investigated using 1 and 4mm optical glass cells.
Di®erent pretreatment methods including SG
smoothing, SNV transformation and derivativeswere
used to enhance the interpretability of the spectra.
Variables selection methods including manual and
interval partial least squares regression (iPLS)
methods were used to select the best spectra region
related to objective compound. Finally, a PLS model
based on the best parameters above was constructed.

2. Materials and Methods

2.1. Materials

Crude CS from shark cartilage was obtained from
Yantai Dongcheng Biochemical Limited Company
of Shandong Province in China. D-glucuronic acid
was purchased from Sigma-Aldrich Co. LLC.
Ethanol was purchased from Tianjin Fuyu Fine
Chemical Co., Ltd. Freshly prepared sulfuric acid
with sodium borate was obtained by dissolving
4.77 g of sodium borate in 500mL of sulfuric acid.
Carbozole (CP) was from Tianjin Guangfu Fine
Chemical Research Institute. All the other reagents
were of analytical grade. Deionized water was pur-
i¯ed by Milli-Q water system (Millipore Corp.,
Bedford, MA, USA).

2.2. Ethanol precipitation process

About 14 g CS and 4 g NaCl were dissolved in
200mL of deionized water. After that, 800mL
ethanol was gradually added through a peristaltic
pump in 10mL�min�1 and 1mL supernatant was
collected for analysis. The ¯rst 7 samples were col-
lected every 3 min, and then 8 samples were collected
every 5 min, and last 3 samples were collected every
10 min. There were 18 samples for each batch and
5 normal batches were repeated in all.

2.3. Reference method

The content of CS was determined using carba-
zole method15 with modi¯cation. Some parameters
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including precision, repeatability, stability and
recovery of method were determined. All samples
were loaded onto a 96-well microplate (200�L/well)
and the absorbance was measured at 540 nm with a
microplate reader (RIO-RAD, Model-680).16

2.4. NIR analyzer

Fourier transform near infared spectrometer
(Antaris II, Thermo Fisher, USA) with InGaAs
detector were used to collect the spectra. The room
temperature and humidity was steady in the lab-
oratory. All samples were loaded in optical cells (1
and 4mm optical length) after centrifugation, and
each spectrum was the average of 32 scans with a
resolution of 4 cm�1. The spectral range was from
10,000 to 4000 cm�1, and background spectrum (32
scans) was taken before the measurement of every
sample. Data analysis including pretreatment and
variable selection was performed by Matlab (7.10.0
R2010a, The Math Works, Inc., USA) and PLS
toolbox (7.0.2, Eigenvector Research, Inc., USA).

2.5. Sample dividing

The samples from ¯ve batches were collected under
the same condition, and were divided into two sets
including calibration set and validation set with
random method. A total of 54 samples from 3 bat-
ches were used to construct the calibration set and
the remaining 36 samples of 2 batches were used as
a validation set which is used to validate the
model's predictive ability.

2.6. Model e±ciency estimation

In order to characterize the prediction ability of a
created PLS model, the coe±cient of determination
of calibration set (R2

cÞ, coe±cient of determination
of validation set (R2

pÞ, root mean square error of
calibration (RMSEC) and root mean square error of
prediction (RMSEP) were used. The equations were
as follows:

R2
c ¼ 1�

Pn
c¼1 ðYc � Ŷ cÞ2Pn
c¼1 ðYc � YlÞ2

; ð1Þ

R2
p ¼ 1�

Pm
p¼1 ðYp � Ŷ pÞ2Pm
p¼1 ðYp � YkÞ2

; ð2Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

c¼1 ðŶ c � YcÞ2
n

s
; ð3Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

p¼1 ðŶ p � YpÞ2
m

s
; ð4Þ

where Yc is the reference result from reference
method of calibration set for sample c, Ŷ c is the
calculated value of calibration set for sample c from
NIRS, Yl is the mean value of Yc from calibration
set, n is the number of calibration set sample, Yp is
the reference result from reference method of vali-
dation set for sample p, Ŷ p is the calculated value of
validation set for sample p from NIRS, Yk is the
mean value of Yp from validation set, m is the
number of calibration set sample.

3. Results and Discussion

3.1. Determination of CS in
supernatant

For quantitative consideration, the calibration
equation was established as follows: y ¼ 0:0109x�
0:0587 (R ¼ 0:9997).

The precision of the reference method was carried
out by continuous measuring of the CS absorbance
of a single sample for six times with a microplate
reader at 540 nm. The Relative standard deviation
(RSD) value of absorbance was 0.12%.

Six parallel determination of CS content of single
sample with a microplate reader at 540 nm gave a
RSD value of 2.26% for repeatability.

The stability was carried out by measuring the
sample (which was used for the determination of
repeatability) content at 0, 10, 20, 30, 60, 90 and
120 min, separately, with a RSD value of absor-
bance 0.59%.

The accuracy of themethodwas con¯rmed by spike
recovery test. The recovery is calculated according to
the following equation:R ¼ ðms �mbÞ/mc, wherems

is the content of the CS sample and D-glucuronic
acid,mb is the content of the CS standard sample and
mc is the content of D-glucuronic acid. Three levels
(0.3, 0.5 and 0.7mL) of CS sample solution were used
for recovery (shown in Table 1), and the RSD value is
2.26%.

The trend chart of CS content changing in ¯ve
batches was shown in Fig. 1, and the initial content
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of the fourth batch was relatively high, which was
because CS content of this batch was high in the
original raw materials.

3.2. Spectra interpretation and

pretreatment

Figure 2 is the raw spectra of CS in the ethanol
precipitation process based on di®erent optical
pathlength. According to Figs. 2(a) (optical path-
length is 1mm) and 2(b) (optical pathlength is
4mm), the raw spectra were mainly dominated by
C–H and O–H,17 which can be seen in the range from
around 4500 to 4300 cm�1 as the C–H combination

vibration, around 5400 to 5100 cm�1 as O–H
stretching vibration and bending vibration, 5950 to
5850 cm�1 as C–H ¯rst overtone vibration, 7000 to
6800 cm�1 as O–H ¯rst overtone vibration.18

In order to get more information from the spec-
tra, proper data pretreatment is necessary before
calibration.3 Four di®erent data pre-processing
methods were utilized, including SG smoothing, SG
smoothing with ¯rst and second derivative (all of
them with a window width 15 variables and poly-
nomial order 2) and SNV. Finally, the ¯rst deriva-
tive with SG smoothing was selected as the
pretreatment method. Figure 3 showed the spectra
pretreated by the ¯rst derivative with SG smooth-
ing based on di®erent pathlength. It was obvious
that O–H stretching vibration and bending vi-
bration around 5400 to 5200 cm�1 has the strongest
absorption in both 1 and 4mm pathlength. How-
ever, O–H ¯rst overtone vibration around 7300 to
7000 cm�1 of 4mm pathlength was much stronger
than that in 1mm pathlength. During the ethanol
precipitation process, the range from 4545 to
4230 cm�1 and 6024 to 5617 cm�1 were regarded as
the regions for absorption bands of C–H.19 There
were lots of spectral information under the 1mm
optical pathlength from 4545 to 4230 cm�1, but
only a small peak can be identi¯ed around 4540 to
442 cm�1 under 4mm pathlength.

(a) (b)

Fig. 2. Raw near infrared spectra of supernatants during CS ethanol precipitation process (A. 1mm optimal pathlength, B. 4mm
optimal pathlength).

Table 1. Sample solution preparation for recovery determination.

1 2 3 4 5 6 7 8 9

Standard CS sample solution V (mL) 0.3 0.3 0.3 0.5 0.5 0.5 0.7 0.7 0.7
D-glucuronic acid solution V (mL) 0.7 0.7 0.7 0.5 0.5 0.5 0.3 0.3 0.3
Sulfuric acid with sodium borate solution V (mL) 3 3 3 3 3 3 3 3 3
Carbozole solution V (mL) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Fig. 1. The content trajectory of CS during ethanol precipi-
tation process.
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3.3. Outlier detection

An important step in building a PLS model is the
identi¯cation of outliers because PLS calibration
method is strongly in°uenced by the presence of
outliers.20,21 Therefore, some outliers detection
methods22–25 such as student residence and leverage
methods were used to remove outliers. According to
this method, no samples in both the 1 and 4mm
pathlength model were considered anomalous in the
full spectral regions evaluated, thereby remaining
the dataset with 90 samples.

3.4. Variable selection method

The NIR spectrum often contains hundreds of
wavelengths (variables). So it is important to identify
variables that contribute the most useful infor-
mation. Variable selection is a critical step in data
analysis for NIRS. Two di®erent methods were used
for variable selection including manual approach and
iPLS. However, when using manual approach, the
relationship between absorption in the NIRS and the
target analytical parameter was always nonlinear
and thus di±cult to identify. In order to resolve this
problem, the original spectra were pretreated by ¯rst
derivative with SG smoothing, and variables that
had no use were removed manually. Also iPLS
methods which can identify information rich regions
of the spectra were used to construct a more robust
multivariate model.26,27 And the region with smallest
prediction error was selected.

The results of the two models were shown in
Table 2. According to the table, the results of 1mm
pathlength model using iPLS method was the best
(with every 50 cm�1 intervals automatically, Fig. 4).
It was C–H ¯rst overtone vibration, and the

absorbance was highly correlated with the content of
CS. The results of the value R2 and of the root mean
square error of calibration (RMSEC) of this region
were much better than any others. In terms of 4mm

Table 2. Results of PLS models of di®erent variables based on
di®erent pathlength.

Variable selection No. of latent

method variables R2
c RMSEC (g/L)

Full regiona 6 0.939 2.979
iPLSa 9 0.973 1.584
Manual selectiona 10 0.958 1.663

Full regionb 5 0.965 1.818

iPLSb 8 0.936 2.209

Manual selectionb 6 0.929 2.982

aVariable selection is based on 1mm pathlength.
bVariable selection is based on 4mm pathlength.

(a) (b)

Fig. 3. Near infrared spectra of supernatants during CS ethanol precipitation process pretreated by ¯rst derivative (A. 1mm
optimal pathlength, B. 4mm optimal pathlength).

Fig. 4. Variable selection results based on 1mm optimal
pathlength.
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pathlength model, the RMSEC result of iPLS was
not so good as the results of 1mm model. Therefore,
the 1mm model was built after unwanted bands
were removed.

3.5. The PLS model

After evaluating the possible existence of outliers
and selecting the appropriate variables and path-
length, a robust PLS model was established. And
the model was validated according to validation
set. The RMSEP was used to evaluate the model.
The model was established as shown in Fig. 5. It
can be seen that the No. of latent variables was 9,
the R2

p was 0.973 and the RMSEP was 3.934 g�L�1.
RMSEP was the most important parameter for
evaluating the model's predictive ability.

4. Conclusion

This research studied the relevance of e®ective in-
formation between NIRS and CS during the process
of ethanol precipitation. By comprehensive com-
parison of the R2

c , RMSEC and RMSEP, it can be
concluded that the model built in 1mm optical
pathlength is better than the one built in 4mm
pathlength. Hence, it is better to choose a shorter
pathlength when dealing with complicated samples,
because it can decrease the error. And it can be
concluded that the raw spectrum in 1mm path-
length is easy to select related variables through
iPLS because it includs more information than 4mm
pathlength. Meanwhile, variable selection is simply
a way for enhancing the precision of the model. The
results show that the selection of variable improved

the veracity of the model, and the relevance between
the e®ective information and spectral became more
evident, and the model predictability and reliability
became much better. In all, throughout this study, it
provided a strategy for revealing the e®ective in-
formation of NIRS and a useful PLS model for
monitoring the manufacture process.
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